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Abstract 

A new software module adding screened Coulomb scattering to the 

Monte Carlo radiation simulation code Geant4 has been applied to compute 

the nonionizing component of energy deposited in semiconductor materials 

by energetic protons and other forms of radiation. This method makes it 

possible to create three-dimensional maps of nonionizing energy deposition 

from all radiation sources in structures with complex compositions and 

geometries. Essential aspects of previous NIEL computations are 

confirmed, and issues are addressed both about the generality of NIEL and 

the ability of beam experiments to simulate the space environment with 

high fidelity, particularly for light ion irradiation at very high energy. A 

comparison of the displacement energy deposited by electromagnetic and 

hadronic interactions of a proton beam with published data on GaAs LED 

degradation supports the conclusion of previous authors that swift light ions 

and slower heavy ions produce electrically active defects with differing 

efficiencies. These results emphasize that, for devices with extremely small 

dimensions, it is increasingly difficult to predict the response of 

components in space without the assistance of computational modeling. 

I Introduction  
Displacement damage can lead to degradation of performance and ultimately device failure in 

many kinds of semiconductor devices [1]. These concerns are particularly acute for devices that 

must operate in space, where radiation is plentiful and spare parts are few [2]. This paper 

describes a new approach to computing the portion of energy that radiation deposits in a device 

in the form of atomic motion. It would, of course, be preferable to directly compute the 

distribution of electrically active defects. However, what constitutes a defect in the electrical 

sense is surprisingly ambiguous, and may also change over time through annealing. Thus, the 

energy deposited in atomic motion is taken here and elsewhere as a measure of initial 

displacement damage.  
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The most common measure of displacement damage in the literature has been nonionizing 

energy loss (NIEL) [3] [4]. However, the application of NIEL to predict device response is not 

always straightforward, as has been recognized in the literature [1], and as we discuss further 

below. In this paper we describe a new approach to computing damage energy made possible by 

an extension of the Geant4 Monte Carlo radiation simulation system [5] that models screened 

Coulomb collisions between nuclei [6]. Because Geant4 already includes sophisticated nuclear-

reaction physics and the ability to track particles through complex geometrical structures, 

modeling essentially all of their physical interactions and those of arbitrarily numerous 

generations of daughter particles, the new Coulomb scattering addition makes it possible, for 

example, to directly address the observed discrepancy at high energies between NIEL and 

measured damage in GaAs LEDs [7][8] in a fundamentally different way. We have found that 

the new computation predicts the scaling of the data with incident particle energy, but with an 

important caveat: the efficiency of producing electrically active defects is not a function of the 

quantity of deposited collisional energy alone [7]. This has been observed before, and attempts 

have been made to modify the computation of NIEL to account for it [9][10]. However, our 

interpretation is fundamentally different. 

The discrepancy between the conventional NIEL and published GaAs LED data strongly 

suggests that the concept of a single energy-based measure of electrically active damage has 

reached its limits of validity, and that microscopic, device-dependent modeling of displacement 

damage, combining both more sophisticated energy deposition computations and theoretical 

modeling of the electrical properties of disordered regions, is required to predict with higher 

confidence the response of sensitive devices to displacement damage in space. The procedure 

described here generates physically realistic distributions of deposited energy in three-

dimensional micro-volumes, tracing particles cascades down to the limits imposed by the binary 

collision approximation, and so forms the basis upon which such a comprehensive strategy may 

be built.  

II Simulation Methodology  

The details of the module that we have added to Geant4 are described in a separate paper [6]. 

The statistical techniques are similar to those that relate scattering angle to impact parameter in 

the well-known TRIM [11] and SRIM [12] codes. These are supplemented by a more 

sophisticated inter-atomic-collision cross section using an extension of an algorithm that is 

described in [13]. The interaction potential between colliding atoms may be selected from a 

predefined set or may be specified by the user. In the case of the curves published here, we have 

used the universal screening function of Ziegler, Biersack and Littmark [14]. However, we do 

not use the same method to obtain a cross section, or more precisely a randomized scattering 

angle. TRIM and SRIM use an approximation called the magic formula that is a large-angle 

extrapolation of an exact small-angle result [15]. This approach has recently been applied to 

estimate NIEL [16] in a formalism that follows quite closely the well established stopping theory 

of Lindhard, Scharff and Schiøtt [17] with additions by later authors.  

By contrast, we use a modification of the algorithm described in [13] that computes an exact 

scattering angle as a function of impact parameter for events below projectile energies of 

approximately 100 MeV per nucleon, and in the relativistic region above this, returns an 

approximation in good agreement with, e.g., the expression of Seitz and Koehler [18] used by 
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Burke [3]. Although less sophisticated than the recent state of the art in relativistic collisions 

[19], it is completely satisfactory for the present purposes. As described in [6], the screened 

scattering process supplements existing Geant4 nuclear reaction processes, such as the binary 

cascade model of nuclear reactions that was used for in this work. Similarly, Geant4 elastic 

hadronic scattering was also used as described in [6]. 

The approach described here differs from previous Monte Carlo computations [20] in 

explicitly tracking all particles, including electrons, photons and neutrons from both 

electromagnetic and hadronic interactions, along with daughter particles of all orders, until all 

have either come to rest or left the experimental volume. The energy deposited in the host 

material by all processes, whether ionizing or nonionizing, can be tracked as a function of 

position and time, and distinguished by interaction type.  

The contributions to nonionizing energy density from primary knock-on atoms (PKAs) and 

daughters of nuclear reaction fragments, although conceptually identical for many purposes, 

were recorded separately. These quantities were computed by tracking the kinetic energy of 

PKAs and nuclear reaction fragments, and all secondary particles created by these primaries. 

Each particle was followed from its creation until its kinetic energy fell below 1 keV. As it 

traveled, its discrete interactions with the lattice atoms down to an energy transfer of 1 eV were 

recorded. Any interaction that transferred less than 1 keV of energy (the large majority of 

interactions) resulted in the tabulated energy at that point in space being increased, and the ion 

energy decreased correspondingly. If a collision resulted in the transfer of more than 1 keV, a 

daughter particle was created and tracked. When a moving ion finally fell below the 1 keV 

threshold, it was stopped in place, and its kinetic energy added to the accumulated nonionizing 

energy at that point. A three dimensional map of deposited energy density 
 
F(z, p; x)  at  x , as a 

function of initial location  z  and momentum 
 
p  of the primary ion was produced in this way. 

The nonionizing energy deposition rate (NIEDR), a quantity that approximates NIEL, was 

computed from 
 
F(z, p; x)  as described in Appendix A. 

The 1 keV threshold was arbitrary and user-selectable. However, tracking to energies much 

below approximately 1 keV fundamentally violates the assumptions of a binary collision model, 

and should be carried out separately by a full molecular dynamics code, if such detail is desired. 

If ion-channeling effects are also of concern, then the threshold to transition to molecular 

dynamics should probably be even higher. The number of events sampled for each data point 

ranged from tens of thousands to hundreds of millions depending on the situation and the 

quantity desired. 

The basic physics of the screened collisions in matter was verified by comparison with three 

classes of scattering measurements, Rutherford backscattering, ion implantation and small angle 

multiple scattering of ions passing through foils [6]. The Rutherford backscattering cross section 

is known theoretically. To test direct and inverse kinematics, the ion implantation ranges and 

range straggling were compared for boron and arsenic implanted into Si using as a standard the 

SRIM program, which has been extensively compared with experiment. The screened Coulomb 

scattering process automatically implements the concept of multiple scattering through repeated 

small angle collisions, and unlike the default Geant4 multiple scattering process, it spawns 

secondary particles that are themselves tracked [6]. There is a wealth of data on multiple 
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scattering in the literature of nuclear and particle-solid interaction physics, and the shapes of the 

angular distributions for various foil thicknesses are well known [21]. The present computation 

predicts the angular distribution of protons and alpha particles in carbon foils with high accuracy. 

In fact, when the screened Coulomb scattering process is being used, multiple scattering as a 

separate process in Geant4 is redundant and should be disabled for nuclei. 

III Results 

Fig. 1 shows the result of a computation of nonionizing energy deposition rate (NIEDR) in GaAs 

along with the data of Barry et al. [7]. Also shown is the NIEL curve of Burke et al. [4][10], 

which has been digitized from Fig. 3 of [7], and a NIEL curve from [22] obtained by applying 

Bragg’s rule to tabulated numerical values of Ga and As NIEL. The NIEDR attributable to direct 

interactions of the proton beam and target nuclei and that by heavy hadronic elastic recoils and 

residual nuclei are displayed separately. The similarity between the curve giving the beam-

generated displacement energy (the solid dots, denoting the relativistic Coulombic calculation) 

and the data of [7] is striking, and suggests that Coulombic elastic interactions of the beam 

generate electrically active defects more efficiently on a per-unit-energy basis than do the 

residual nuclei [9]. 

Fig. 2 shows the NIEDR curves as in Fig. 1 computed for protons in Si, along with the NIEL 

value for protons in Si from [22]. Again the contributions to NIEDR from direct beam-target 

interactions and those from residual recoil nuclei are shown separately. The numerical 

differences, particularly at high energies, underscore that NIEDR and NIEL, while similar in 

concept, are potentially different in detail. 

To gather insight into the microstructural differences between direct beam effects and those by 

residual nuclei, we have examined the makeup and energy of nuclear reaction fragments as well 

as the three dimensional microstructure of a number of discrete nuclear reaction events occurring 

in GaAs and Si. A stereogram of such an event in GaAs is presented in Fig. 3. 

In Fig. 3 the ionizing (black) and nonionizing (red) energy density are shown as a function of 

position for a single 100 MeV proton (green trajectory) interacting with 
75As  in GaAs. Energy 

density information is superposed with particle trajectory information for neutrons to form a 

complete image of the event. Two views of the event with different length scales are presented, 

with Fig. 3(b) showing greater detail around the nuclear reaction vertex. Fig. 3(b) is also rotated 

by a few degrees relative to Fig. 3(a). Three widely dispersed regions with displacement damage 

indicated by red dots (with red circles around them so they can be found) produced by the 

recoiling spallation products are visible in the upper figure.  

The heavy residual nucleus, which moves downward from the vertex, produces extensive and 

concentrated displacement damage. Neutrons from the nuclear reaction, which don’t interact 

otherwise, are shown as cyan trajectories. Gamma rays are not shown. This figure illustrates 

graphically the qualitative difference in displacement damage produced by swift light ions and 

slower heavy ions. By fusing these images visually, the three-dimensional structure of the 

reaction can be observed. 

IV Discussion 

The data of Barry, et al. [7] shown in Fig. 1 have engendered a substantial discussion in the 

literature. (See reference [1] and references therein.) The issue can be stated succinctly. When 

applied to silicon systems, NIEL as defined below, has been successful in predicting electrical 
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effects attributed to displacement damage. However, when the same methodology was applied to 

the GaAs system, the disagreement shown in Fig. 1 resulted. Specifically, for silicon systems it 

appears to be appropriate to simply add the contributions from direct beam-target interactions 

and from recoil nuclei created in nuclear reactions to obtain an overall NIEL. One concludes 

from the data of Barry, et al. [7] that same methodology does not work for GaAs. The question 

was, and is, why, and more importantly, in light of this finding, how can one be confident that 

NIEL can be used as an a priori predictor of electrical displacement damage effects? In 

consideration of this question, let us look closely at the definition of NIEL. 

Physically, NIEL is a variation of nuclear stopping power that includes a correction designed to 

exclude energy expended in ionization by recoil particles. Unlike nuclear stopping power, it also 

explicitly includes nuclear reactions in addition to elastic ion-atom collisions. Burke first 

articulated the concept of NIEL as it is presently employed [3][4][10], and Jun has recently 

introduced an important modification to the procedure for calculating it [23]. Additional changes 

have been proposed by Messenger et al. in [9] with yet more refinements in [16]. Akkerman et 

al. use another relatively distinct approach [24]. References [4][16][23][24] have the clearest 

mathematical statements of the definition, and the method of [23] has been widely adopted (e.g. 

[16][22][25]). The comments that follow apply most directly to the original procedure described 

by Burke [3][4][10], but they are generally applicable.  

NIEL is a measure of that portion of energy lost by a quantum of radiation, per unit of trajectory, 

at a specific point, that ultimately ends up somewhere in a (hypothetically infinite) target in the 

form of whole-atom motion. Thus, while its numerical value is assigned at a point, the value 

measures effects that are non-local [10]. NIEL is ordinarily defined by the following expression, 

which is a composite of equations from [4] and [23]:  

 NIEL(E) =
NA

A
L(T ) T d i (E,T )

i

 (1) 

Here d i (E,T )  is the differential cross section for a particle with energy E to create a secondary 

particle with kinetic energy T, L(T )  is a quantity called the Lindhard partition function [26], N
A
 

is Avogadro’s number, A is the molar atomic mass in g / cm3 , and the summation and integration 

are assumed to be over all kinematically-permitted processes. Both [4] and [23] distinguish 

Coulomb scattering and nuclear reaction events as distinct elements of the sum. Reference [4] 

applies the Lindhard partition to the average energy of nuclear recoils, while [23] uses MCNPX, 

another Monte Carlo radiation code [27], to obtain information on nuclear reaction fragments.  

To understand (1), consider a simple modification of the Coulomb term involving the total 

cross section for Coulomb collisions. This Coulomb scattering term appears in both [4] and [23]. 

 
dE

dx
dx = N( totaldx) (L(T ) 1) T

d C

total

 (2) 

Here N is the density of target atoms in cm-3,  is the target density in g/cm3, and we have 

introduced a differential energy loss | |dE/dx  as the particle moves a distance dx at position x. The 

term d
C
/

total
 is just the probability of transferring energy T in a collision. Setting L(T)=1 for a 

moment, the integral is then the average energy T  transferred in a collision. The term 
total

dx is 

a volume. If 
total

 is interpreted as the transverse area of the projectile, then totaldx  is the volume 

that the projectile sweeps out in moving a distance dx , the volume in which all target atoms will 
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be hit. To obtain the number of particles in this volume, one multiplies by N. To obtain the 

average energy lost by the projectile in all collisions in this volume, one also multiplies by T . 

The result is:  

 
dE

dx
= N total T

d C

total

= N T d C  (3) 

This is the well-known expression for linear energy transfer (LET), or stopping power [28]. All 

that remains is to divide by the density  of the target to obtain the usual unit. The critical point 

to be recognized is that LET refers to the beam and not to the target. It specifies how much 

energy the beam loses for a given increment of trajectory. It does not say how much energy is 

deposited locally at a point in the target. Of course, through conservation of energy, the energy 

lost by the beam must end up somewhere, but LET does not specify where. Instead, ion track 

models must be invoked to describe how the ion’s energy is distributed [29].  

NIEL blurs the distinction between a beam and a device property. Its value quantifies the 

energy surrendered by the beam at a given point, without regard to where that energy ultimately 

manifests itself in a device. For practical applications, it is the disorder in the three dimensional 

sensitive volume of a device, and more specifically the disorder that leads to electrically active 

defects, that is important. NIEL does not attempt to do this spatial bookkeeping. 

In the mathematical notation usually used when NIEL is defined, this non-local aspect of the 

value is not obvious. This ambiguity in NIEL has been recognized and in [10] the authors 

considered the effects of particle equilibrium near a surface and defined “restricted energy loss” 

to compensate, but to date no other method of describing (the potential for) displacement damage 

on a scale comparable to modern logic devices has been proposed. Similar arguments apply to 

LET, of course, but for predicting the details of charge deposition, LET is augmented with a 

radial track model. The situation with displacement damage is more complicated because, as a 

structural modification in the semiconductor material, it is relatively permanent and it has 

electrical properties that depend on the extent and atomic-scale structure of the damaged region. 

The spatial uncertainty is further complicated by L(T ) , the Lindhard partition function 

[26][30]. L(T ) is the fraction of the energy T of a primary recoil that is not consumed in 

electron-hole pair creation. Thus, its inclusion in (1) would appear to be straightforward and well 

justified. However, the integral equation from which L(T ) is derived is a function only of the 

energy of the primary particle and assumes implicitly an infinite, homogeneous, isotropic 

medium for the full development of a cascade event. Consequently, equation (1) causes all of the 

energy of a secondary particle to be accounted for at the location of its creation, even if that 

energy is actually deposited many microns away. For this reason, low mass nuclear fragments 

are normally excluded from NIEL computations using (1). However, even relatively frequently 

occurring residual nuclei from, e.g., cosmic ray proton bombardment, have ranges of several 

microns. 

When one is calculating ionizing radiation effects of protons (e.g., single event effects) using 

LET, the intrinsic variability of secondary electron ranges along a particle track does not lead to 

significant difficulties in the results, except in structures with dimensions on the order of the 

track diameter. However, protons and other particles with energy in the electronic stopping 

regime deposit their collisional (non-ionizing) energy preferentially at the ends of their ranges. 

In the approach discussed here, the requisite physics is included within the computation, so that 
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it is not necessary to invoke L(T ) . Since the deposited energy is recorded as a function of 

position in the three-dimensional device structure, the non-locality problem does not arise. In 

fact, the present method can be used to compute L(T ) . Appendix B contains additional 

information on L(T) including a figure showing its computed values for Si recoils and protons in 

silicon for several target thicknesses.  

In beam experiments the maximum energy of recoil particles is ordinarily in the velocity-

proportional stopping region, on the low-energy side of the Bragg peak of the LET curve. Such 

particles have the greatest rate of energy loss when they are created, and they tend to deposit 

their energy in the vicinity of their point of origin, much as the ionization generated by LET. 

Moreover, at low energies, the directionality of atomic collisions in solids becomes less extreme. 

Thus, when recoils are low in energy, as shown in Fig. 1, NIEL gives a credible result, in spite of 

any possible conceptual subtleties with its definition.  

When the requisite conditions identified for NIEL validity are in question, specifically when 

primary particles are swift, nuclear reactions occur, or device dimensions are small compared 

with the range of secondary particles, caution in relating NIEL values to displacement damage at 

specific locations is appropriate [9][10]. 

The nonionizing energy density defined in Appendix A conveys much more spatial 

information than NIEL. Thus, one might reasonably ask whether or not the discrepancy between 

the computation and data shown in Fig. 1 could have been anticipated in advance and whether 

future discrepancies will now be anticipated. It is not the purpose of this paper to answer this 

question, but rather to introduce a technique that may in the future be instrumental in doing so. 

Nevertheless, in light of the observed discrepancy, it is possible to recognize warning signs 

which in retrospect might have raised questions about the relative appropriateness of simply 

adding NIEL for protons and recoil nuclei in the Si and GaAs systems. 

In analyzing the fragmentation patters of nuclei in Si and GaAs using Geant4, two things 

become apparent. First and obviously, the recoil nuclei are higher in mass for the GaAs system. 

Less obviously, the recoil nuclei from the Si breakup are higher in energy. Roughly, this happens 

for two reasons. First, the asymmetry between the spallation and recoil fragments is lower for Si 

so that momentum sharing implies more energy for the heavy fragment. Second, the Si reaction 

appears to emit alpha particles more frequently. These result in much more momentum and 

energy being transmitted to the fragment. In addition, smaller fragments, e.g. O are much more 

frequent than in the GaAs system. 

It is well known in the study of atomic collisions in solids that slow heavy ions in high-

atomic-mass targets produce dense and closely spaced collision cascades. From a comparison of 

the mass and energy distributions of the residual recoil nuclei from reactions in Si and GaAs, one 

may conclude that the damage in GaAs (Fig. 3) should be significantly more concentrated. Also, 

the correlation length of conduction electrons, as measured by the Bohr radius of neutral donor 

impurities, is larger by a factor of approximately 4 in GaAs than in Si. Together, these 

observations suggest that displacement damage from residual nuclei in Si may appear to 

conduction electrons more like random beam-generated collision cascades than does similar 

damage in GaAs. 

A final point worth keeping in mind concerns statistics. Assuming a geometrical cross section 

of roughly 0.4 to 0.8 barns for Si, Ga and As, the probability of one event like that of Fig. 3 in a 

given cubic m of material for a 1011cm 2
 fluence of protons is only about 0.2-0.3%. (In [7] the 

highest reported fluence is about 6 1010cm 2
.) It is entirely possible in some circumstances that 
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averaging the recoil nucleus contribution to energy deposition may be inappropriate by virtue of 

the expected total number of such events. By this observation, we do not intend to assert that this 

is the explanation for the experiment discussed in [7]. We simply observe that if one computes 

the average NIEL or deposited energy density with a numerically convenient virtual flux, it may 

or may not represent the expectation in an experiment where counting statistics of small numbers 

becomes important. In such a limit, it will be necessary to explore computationally the response 

of individual devices to ensembles of random events such as shown in Fig. 3 to assess device 

effects. This will, in turn, require advances in the theory that relates deposited energy to the type, 

density, and arrangement of electrically active defects. 

V. Simulation Fidelity in Beam Experiments 

An indirect but potentially very important benefit of the Monte Carlo approach to 

displacement estimation is the ability to handle complex radiation environments without the need 

to separately propagate them to the sensitive region of a device. Understanding this issue is 

crucial to judging the ability of beam experiments to evaluate accurately the sensitivities of 

devices to displacement damage in space. A particular challenge, as also recognized in previous 

studies (e.g., [7][31]) is establishing secondary particle equilibrium in beam experiments. In 

space, radiation is omni directional and distributed in energy. In a beam experiment, particles 

typically are unidirectional and approximately monoenergetic. Length scales are dramatically 

different to establish secondary particle equilibrium for ionization effects and displacement 

effects, owing to the very different ranges of the secondary particles that ultimately lead to 

electrically active defects in these interactions. Moreover, length scales to establish particle 

equilibrium are much smaller (approximately a few µm) for slow heavy ions as opposed to the 

vastly longer length scales of swift light ions (>>1 mm for high-energy proton beams) [10].  

For devices of most interest to modern microelectronics and photonics in space, device 

dimensions of interest increasingly are less than 1 µm, and in many significant device types are at 

or approaching nanoscale dimensions. This means that the interactions that cause detectable 

damage in a particular device region increasingly are caused by events that are initiated outside 

the electrically sensitive region.  

In beam experiments, scattering events tend to be biased towards the forward direction. 

Unless the surrounding layers are sufficiently thick to ensure that “scatter in” events causing 

damage in beam experiments balance the particles that scatter out of the sensitive region, device 

degradation in space (where surrounding materials typically ensure particle equilibrium) likely 

will be underestimated. Summers et al. have introduced “restricted energy loss” [10] specifically 

to account for such effects. Using the methods described here, such assumptions are unnecessary. 

Calculations that correctly include all relevant interactions with the device and its surroundings 

are possible, so that even non-equilibrium situations are handled correctly.  

These considerations are also important for single event effects. A particularly dramatic 

example of the kinds of effects one may see owing in part to issues of secondary particle 

equilibrium is the strong angular dependence of photocurrent in modern electronic circuits 

[32][33] and optocouplers [34]. A simple calculation of particle ranges in the semiconductor of 

interest [34] shows that, at moderate proton energies (10-60 MeV), one easily moves from a 

condition in which one is well outside of secondary electronic equilibrium for normal incidence 

beam irradiation into a case where one establishes particle equilibrium when the beam must pass 

through intervening packaging and surrounding device layers. This adds to the other geometrical 
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and beam physics effects discussed explicitly in Refs. [32][33][34], and can induce extreme 

variability in device response for cases in which small changes in angular positioning introduce a 

significant change in the amount of forward-scattering material through which the beam must 

pass. For higher energy proton irradiation (e.g., ~200 MeV), the device is not within particle 

equilibrium at any typical beam experiment configuration, leading to an elimination of the 

angular effect, as observed experimentally [33]. While these examples are for ionization damage, 

similar effects must occur in displacement damage experiments. When the active volume of the 

device includes stopped particles, defect densities will exceed those measured when it does not. 

With the assistance of Geant4 computations, one can improve the design and interpretation of 

these kinds of experiments. Without sophisticated computational assistance, extrapolating from 

beam experiments to space response becomes increasingly difficult for modern space electronics 

and photonics technologies [10]. The new computational methods discussed here should help to 

improve the simulation fidelity of beam experiments significantly.  

VI. Conclusions  

A screened Coulomb scattering module has been developed for Geant4. Relevant scattering 

characteristics have been verified by comparison with Rutherford scattering, ion implantation, 

and small-angle multiple scattering analytic computations and data. The resulting Geant4-based 

tool is directly applicable for computing three-dimensional maps of nonionizing energy density 

in semiconductor devices with arbitrary materials and geometries. This includes contributions 

from primary and secondary ions of all orders, as well as those from hadronic reactions and even 

elementary particles. An application of this tool to GaAs has reproduced the variation of damage 

coefficient in GaAs light-emitting diodes from proton radiation over several orders of magnitude 

in proton energy. However, it has been necessary to distinguish between damage produced by 

light ions and heavy recoils, and to assume that the latter generate electrically active defects less 

efficiently on a per-unit-energy basis [7]. 

The concept of NIEL has been examined critically and potential limitations involving the 

location of deposited energy and the use of the Lindhard partition function have been identified. 

Although minimized by recent improvements in the strategy for computing NIEL, these issues 

serve to underscore the ultimate difficulty of characterizing radiation-induced displacement 

damage in a semiconductor device with a single energy-derived parameter. A more general 

measure of initial average displacement damage, the nonionizing (or displacement) energy 

density, has been defined (Appendix B), and an expression has been given that relates it to the 

average energy deposition rate along path by the primary ion. Computed by Monte Carlo 

techniques, nonionizing energy density averages the effect of the radiation flux in a specific 

device, yielding a measure of damage that is a function of position, and dependent upon not only 

the local materials properties, but also those of the immediate environment.  

Unfortunately, no average can capture extreme single event behavior. For this reason, in the 

absence of a theory relating nonionizing energy deposition to electrically active defects, it is 

advisable to distinguish the nonionizing contributions from Coulomb scattering and hadronic 

reactions in a computation, and to consider them separately when comparing computed damage 

energy with experiments. Similarly, it may be useful to distinguish displacement events from 

events that generate phonons (collisions transferring an amount of energy below the 

displacement threshold). The methods proposed here make it possible to do all these things, and 

as such establish a basis for quantitative studies of the relationship between microscopic 

structure of energy deposition and the production of electrically active defects. When fully 
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implemented, these techniques will significantly improve predictions of space response from 

beam experiments.  

Appendix A 
The availability of screened Coulomb scattering in Geant4 leads naturally to the definition of a 

new energy deposition parameter that complements and extends NIEL. This parameter is 

 
F(z, p; x) , the average nonionizing energy deposited per unit volume at location  x  by a source 

particle with momentum 
 
p  initially located at position  z . 

 
F(z, p; x)  is a field defined at all 

points within and around the target, which embodies the intent of NIEL without sacrificing the 

spatial information that is lost by using L(T )  and referring energy back to the ion loss rate. The 

nonionizing energy deposition rate (NIEDR), which has the same units as NIEL and which 

approximates it in value, can be derived from 
 
F(z, p; x) . NIEDR describes the nonionizing 

energy deposited per unit length of particle trajectory in the initial direction, at a specific range z 

and is defined as follows: 

 
 
NIEL(E(p, z)) NIEDR(p, z) = F(0, p k, z k)dxdy  (4) 

Here the particle’s initial point is assumed to at the origin of the coordinate system, with initial 

momentum 
 
p k  in the +z  direction, as indicated by the unit vector  k . E(p, z) is the energy of 

the particle at location z given initial momentum p  at location  0 . The double integral is over the 

plane transverse to the particle’s direction of travel. So defined, NIEDR has the expected unit of 

energy/length (where length is often expressed in g / cm2  of target material by dividing by the 

density ) and is a function of the projectile’s initial momentum and the point of observation 

 
x = z k . (The deposition rate is also a function of energy through the range-energy relationship 

E(p, z) .) NIEL, on the other hand, is naturally a function of particle velocity and is thus usually 

expressed directly as a function of energy. The curves in Figs. 1 and 2 of this publication were 

obtained from the Geant4 simulation of protons in GaAs and Si respectively by reducing 

 
F(z, p; x)  to NIEDR, for direct comparison with NIEL and the data. For numerical convenience, 

the average NIEDR over a 10 m thickness in z was computed, but no other corrections were 

make to the value as defined in equation (4). Fig. 3, on the other hand, is a visualization of 

 
F(z, p; x)  with particle trajectories superimposed to provide context. 

The use of a distribution function such as 
 
F(z, p; x)  to describe atomic collisions in solids is not 

a new idea. Winterbon, Sigmund and Sanders [35] presented an integral equation for 
 
F(z, p; x)  

in a homogeneous, isotropic, elemental material, and solved it for restricted collision cross 

sections and low-energy primary particles. However, the complexity of a real semiconductor 

device, heterogeneous in composition and intricate in geometry, is so great by comparison that it 

does not make sense to even write down the generalized transport equations, much less attempt 

to solve them. The only practical approach to the solution is Monte Carlo simulation. The 

approach presented in this paper is quite literally a Monte Carlo solution of a transport equation 

for the quantity 
 
F(z, p; x) . However, even this added level of complexity cannot be assumed to 
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be sufficient, since 
 
F(z, p; x)  is itself composed of components (e.g. phonon energy density and 

displacement energy density), and like NIEL it is an average.  

In order to understand the significance of 
 
F(z, p; x)  being an average, it is necessary to visualize 

a specific event. The average 
 
F(z, p; x)  is related to the energy deposition of the ith  particle in a 

Monte Carlo simulation through: 

 

 

F(z, p; x) =
1

N
Fn (z, p; x)

n=1

N

 (5) 

Here 
 
Fn (z, p; x)  is the nonionizing energy density at x produced by a single incident ion. It is a 

particular strength of the present approach that physically based statistical information on 

extreme displacement events is contained in the distribution of the 
 
Fn (z, p; x) . In the region 

where NIEL has difficulties (e.g., well above 10 MeV in Fig. 1), there are two classes of events 

with significantly different properties. Events that deposit lattice energy through the direct 

generation of primary recoils are by far the most numerous, and their contribution is sufficient 

alone to account for the trend of the data presented in Fig. 1. Events such as that shown in Fig. 3 

that involve a nuclear reaction are of a substantially different character.  

Fig. 3 is a stereogram of the vertex region of a nuclear reaction, shown at two different length 

scales. It is actually a composite diagram showing both energy density in red (typically red dots 

corresponding roughly to 2 nm voxels), and for context particle trajectories as well. A 100 MeV 

proton (green trajectory) enters from the right and strikes an 75As nucleus producing numerous 

fragments. Neutrons are shown as cyan trajectories and produce no secondary displacement or 

ionization. Gamma rays are omitted from the figure. The low-mass charged fragment trajectories 

may be identified as the origin of numerous delta electron tracks, shown as thin gray lines. 

Barely visible along the particle trajectories are several red dots (with red circles to aid location), 

indicating the locations of regions of displacement energy deposition. Although these are often 

referred to as point defects, their actual structure is likely to be more complex.  

The short chain of red dots, shown in enlarged form in the lower Fig. 3(b), is a series of 

discrete displacement damage regions produced by the 
62Ni  recoil nucleus, which has an energy 

of ~2.9 MeV. The distance from the vertex to the final location of this recoil is about 0.5 µm. 

This compares with a mean range for 3 MeV 
62Ni  in GaAs of about 1.2 µm, as computed with 

Geant4 using the screened Coulomb scattering module described above. The displacement 

energy deposited by the 
62Ni  fragment is ~200 keV.  

Most of the red dots, which are derived from energy deposition data recorded on a 1 nm grid, 

represent a single stopped recoil with energy  <1 keV. A few have substructure. Generally, this 

means that the disordered regions are at most a few nm in diameter and probably only about 2-

4 nm in diameter. Note finally at the top of Fig. 3(b) that one of the displacement events 

produced by a charged spallation fragment is visible. Although spallation nuclear reactions, 

which dominate for high-energy protons, often result in several very energetic low-mass charged 

fragments, the total nonionizing energy that these fragments deposit in the sensitive volume 

(specifically for the case shown in Fig. 1 and the event of Fig. 3) is usually trivial compared with 

the energy of the heavy recoiling residual nucleus or of the recoil nucleus in a hadronic elastic 

scattering event [4]. 
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Coulomb interactions by highly energetic light nuclei produce occasional and widely 

dispersed damage regions and are relatively frequent. Reaction fragments and high-energy, 

heavy elastic recoils produce massive, correlated damage of the kind shown in Fig. 3 and are 

very infrequent. There is no reason a priori to believe that the yields of electrically active defects 

from these two events are commensurate [1][10][24][36]. In fact, the data of Fig. 1 argue 

strongly that they are not. 

In Fig. 1, the energy density attributable to heavy recoils is shown separately, but in the 

correct ratio to the elastic recoil contribution. The success of the Coulomb curve in alone 

capturing the trend in the data suggests that electrically active defects produced by heavy recoils 

come at a higher price energetically [1][10][24][36]. Indeed the clusters in Fig. 3, although small, 

may contain hundreds of displaced atoms. Thus, relatively large regions of disorder may be 

acting collectively from an electrical perspective [1][7][37].  

One measure of the correlation length of an electron in GaAs, the Bohr radius of a neutral 

donor impurity is ~10 nm. This is large enough to encompass an entire damage cascade and 

perhaps multiple cascades. In Si on the other hand, this value is about four times smaller.  Along 

with the energetics of the recoils and the resulting collision cascade densities, these observations 

lead us to a conservative hypothesis that the displacement energy from Coulomb scattering by 

the beam and by residual nuclei from nuclear reactions should not be combined unless it can be 

shown that the electrical characteristics of the resulting damage warrant such an approximation. 

This is the opposite assumption from that originally made in computing NIEL, where all 

displacement energy was taken to be equivalent for producing electrically active damage. 

Unfortunately, the research described in [1][37] on the effects of damage clusters did not 

address the relationship between the physical structure of defect clusters and their electrical 

properties. With the techniques now available to compute the statistical properties of large 

numbers of structures such as that shown in Fig. 3, it is clear that such a correlation is needed.  

For example, the relationship between deposited energy and the electrical activity of the 

resultant damage can depend on the majority carrier type, as shown in [31]. This produces an 

apparent difference in displacement damage in p- and n-type materials despite similar radiation 

exposure. Such a difference is almost impossible to imagine on the basis of collision energetics 

alone.  

Another striking aspect of Fig. 3 is the overall size and spatial correlation of the apparent 

damage produced by the recoil nucleus. Simulations of this kind reinforce the notion that 

displacement single events may be electrically significant [38], particularly if a structure such as 

shown in Fig. 3 crosses an insulator or a thin sensitive volume. Might a chain of defects such as 

in Fig. 3 support hopping conduction and thereby short an insulator, leading to leakage or 

catastrophic failure? The Monte Carlo computation described here makes it possible to test such 

hypotheses through the statistics of 
 
Fn (z, p; x)  [39]. 

The nonionizing energy density 
 
F(z, p; x)  and the distribution of individual events that it 

represents are physically based, can be obtained for any primary particle, radiation spectrum or 

device geometry, and can serve as a firm starting point in a multi-step computation of electrically 

active defect density. 
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Appendix B 
In this appendix, the meaning of the Lindhard partition function [26] is explored in greater detail. 

Norgett, Robinson and Torrens [30] have produced an approximate function giving L(T )  that 

has been adopted for NIEL computations [23]. This function was derived under the assumption 

that the most energetic particles, those with asymptotically large energy, were still in the 

velocity-proportional stopping regime. In [30] the valid range is described as 25A1
4 /3z1keV  “and 

possibly much less”, where A1  and z1  are the atomic mass and atomic number of the projectile, 

respectively. The Monte Carlo scheme described here simulates collisions in detail, and so 

makes it possible to compute L(T ) directly. 

The results of such a computation are shown in Fig. 4 for silicon recoils in (amorphous) 

silicon, which should be compared with Fig. 6 of [23]. (Si was chosen over GaAs for this 

comparison because it is elemental.) The approximation of Norgett et al. is also shown in Fig. 4 

for comparison [30]. The computed values match Lindhard’s prediction very well for low energy 

primary particles. The difference is almost certainly due to the screening functions that were 

used, Thomas-Fermi by Lindhard, ZBL here.  

At higher energies, particularly above the Bragg peak, which for silicon ions in Si is about 

20 MeV, there is a notable increase of the actual value of L(T) above the Lindhard-Robinson 

curve. Interestingly, Lindhard, et al., realized this would happen and commented on it on p. 31 of 

[26], also showing the effect graphically in their Fig. 10 on p. 36. However, since the focus of 

their work was low-energy ion-solid interactions, no correction to the “partition” was attempted.  

Of even greater importance than the asymptotic form of L(T )  is the effect on its value of the 

target geometry. The thickness of the target used to compute Fig. 4(a) was 10 mm (note 

millimeters). To gain an appreciation of the significance of the non-locality implicit in using the 

Lindhard partition, Fig. 4(a) also has curves of the computed values L(T )  for 10 µm and 500 µm. 

The computed values fall far below the Lindhard-Robinson curve when the thickness of real 

samples is considered. Only in large samples away from boundaries in rigorously isotropic 

radiation is it completely safe to ignore this geometrical dependence. Moreover, it is apparently 

not well known that extending the asymptotic range of L(T )  to a GeV, as in Fig. 3 of [4] or Fig. 

6 of [23] is inconsistent with the defining assumptions. Compare, in particular, Figs. 6 and 10 of 

reference [26]. L(T )  is only asymptotically constant for velocity-proportional stopping, and for 

high-energy particles the energy represented by is deposited quite far from the vertex at which it 

is tallied by (1). The casual reader might look at Fig. 5(a) and be tempted to conclude that one 

need only replace L(T )  in (1) by the computed partition as a correction. However, this would be 

misguided. The effort to compute a correction for a real system in this way would exceed that 

needed to compute the deposited energy density as a function of position from first principles. 

Fig. 4(b) presents a computation of the Lindhard partition function for protons. This curve 

clearly demonstrates that the Lindhard-Robinson function should never be used to estimate 

damage by light spallation fragments.  
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Fig. 1: The nonionizing energy deposition rate for protons in GaAs, NIEDR from equation (4), 

computed by the methods of this publication. Contributions from Coulombic beam-target 

interactions and those produced by nuclear reaction fragments, including hadronic elastic recoils, 

are plotted separately. NIEL from [4] and [22], and the data of Barry, et al., [7] are shown for 

comparison. The left and right scales are adjusted to match computations and data at low 

energies. 
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Fig. 2:  The nonionizing energy deposition rate for protons in Si, NIEDR from equation (4), 

computed by the methods of this publication along with NIEL from [22]. Contributions to 

NIEDR from Coulombic beam-target interactions and those produced by nuclear reaction 

fragments, including hadronic elastic recoils, are plotted separately. NIEL sums these 

components. 
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Fig. 3:  A stereogram showing the ionizing (black) and nonionizing (red) energy density as a 

function of position for a single 100 MeV proton (green trajectory) interacting with 
75As  in 

GaAs. Views 3(a) and 3(b) show the same event with different length scales. The distance 

between the vertex and the position at which the residual nucleus, whose trajectory is shown as a 

sequence of red dots, comes to rest is approximately 0.5 m. The left and right images of each 

figure can be fused optically to view the event in three dimensions. 
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Fig. 4:  Damage energy in silicon versus projectile energy for incident silicon (a) and protons (b). 

In each case, the solid (blue) line is the Lindhard-Robinson partition L(T )  given by equations 

(5)-(9) of [30]. The red curve in each case is the computed value of the damage energy for a full 

10 mm thickness of Si. The other curves are the damage energy for thinner sections of material. 


